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Amplitude scanning and validation

.4 Fitting framework validation

The unbinned maximum likelihood fit is of considerable complexity. In the development

of the fitting framework, the starting point is provided by simplified models. Successive

complications are then progressively introduced. The J/ψK samples were particularly useful

at many stages in this respect. Their sample composition, mass and proper time models

happen to be relatively simpler in general. When deriving the implementation of trigger bias

in the proper decay time distribution, it was insightful again to work with the unbiased J/ψK

samples. Biases were introduced as ad-hoc selection thresholds, such as simple, direct cuts

on proper time. It became apparent, using actual data in this way, that certain approaches

previously attempted do not suit. Once solutions for the simpler cases are found, further

elaborations alongside similar lines are then pursued.

A technique that was consistently employed in the development of the fitting model and

for checking implementation consistency was that of toy Monte Carlo. Events are sampled

according to the likelihood model. If a large enough number of events is generated, its distri-

bution will exactly coincide, by design, with the likelihood function. In these circumstances,

a fit to the data should return precisely the parameter values that were employed for the

generation. This is a useful consistency test. Differences between the expected value param-

eter and its value returned by the fit must be due to statistical fluctuations. The distribution

of such differences, referred to as “pull”, should be consistent with a unit Gaussian centered

at zero. To achieve the proper statistical fluctuation, the number of events simulated for

each sample is matched to that collected in the data. This allows a direct, quantitative

determination of whether the values returned by the likelihood are unbiased estimators of

the fit parameters. A selection of pull distributions is shown in Figure 1. The Gaussian

characteristics of such distributions for selected parameters are shown in Tables 1 – 3.
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parameter mean width Gaussian fit prob.

M 0.025± 0.023 1.043± 0.017 0.937

σm −0.036± 0.023 1.027± 0.016 0.786

fbg −0.012± 0.022 0.993± 0.016 0.787

cτ −0.025± 0.022 1.004± 0.016 0.231

backgr. cτ −0.049± 0.023 1.014± 0.016 0.228

backgr. offset 0.009± 0.022 0.999± 0.016 0.742

backgr. σ −0.106± 0.023 1.026± 0.016 0.219

Table 1: Characteristics of pull distributions for mass and lifetime fits; 1000 events per

pseudo-experiment.

parameter mean width Gaussian fit prob.

m 0.088± 0.031 0.987± 0.022 0.969

cτ −0.021± 0.033 1.029± 0.023 0.884

∆md 0.012± 0.033 1.047± 0.023 0.032

SMT ε −0.064± 0.031 0.981± 0.022 0.780

JJP ε −0.011± 0.031 0.988± 0.022 0.459

SMT D 0.092± 0.031 0.994± 0.022 0.782

JJP D −0.002± 0.033 1.049± 0.023 0.985

SMT εbg −0.029± 0.031 0.991± 0.022 0.950

JJP εbg 0.046± 0.031 0.970± 0.022 0.781

SMT Dbg −0.016± 0.032 1.017± 0.023 0.013

JJP Dbg 0.018± 0.032 1.011± 0.023 0.554

Table 2: Characteristics of pull distributions for mixing fits; 2000 events per pseudo-

experiment, two taggers, ∆m = 0.5 ps−1.

parameter mean width Gaussian fit prob.

m 0.034± 0.033 1.054± 0.024 0.610

cτ −0.055± 0.032 1.012± 0.023 0.389

A −0.007± 0.034 1.062± 0.024 0.662

SMT ε −0.076± 0.033 1.042± 0.023 0.245

JJP ε −0.052± 0.032 1.018± 0.023 0.235

SMT εbg −0.028± 0.032 0.998± 0.022 0.568

JJP εbg −0.005± 0.032 1.010± 0.023 0.827

SMT Dbg −0.034± 0.033 1.046± 0.023 0.697

JJP Dbg 0.024± 0.032 1.022± 0.023 0.373

Table 3: Characteristics of pull distributions for amplitude scan fits; 2000 events per pseudo-

experiment, two taggers with fixed dilution scale factors, ∆m = 15ps−1.
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Figure 1: Toy Monte Carlo pull distributions, for a selection of mass and proper time fit

parameters.
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.5 Shape of the amplitude scan profile

In the amplitude scan method, in case the probe frequency coincides with that of the oscil-

lating system, the amplitude is expected to be maximal and unity. As frequencies away from

that true value are probed, the amplitude is expected to approach zero. The shape of the

resonance peak is expected to be given, modulo slowly varying functions, by a Breit-Wigner

function, whose width is determined by the lifetime of the system. This issue is investigated

using Fourier analysis, as is done in Section 11.1. In case, however, the proper decay time dis-

tribution is biased, deviating from the form of a smeared exponential, so-called undershooting

effects are expected on both sides of the amplitude peak.

The appearance of such effects has been demonstrated for the case of a simple bias

in (11.13). A graphical representation is provided in Figure 2. This is a simple, convenient

illustration of the origin behind the general effect. A more elaborate analytical treatment

may be pursued to account for more realistic conditions. However, for such more complex,

specific cases a simulation of the involved sample characteristics becomes appropriate. The

scan obtained from a full fit of a toy Monte Carlo mixing sample is shown in Figure 3, for a

representative frequency of ∆md. The generation of the sample is performed both including

and excluding the characteristic proper time bias, using in the fit model the t-efficiency

function and turning it off, as appropriate. The undershooting is verified in the former case

and absent in the latter, as expected. The amplitude scan performed on an actual data

sample of fully reconstructed B0 decays is shown in Figure 4(a) [61].

We make now a worthy consideration about the width of the amplitude peak. As it

is apparent from Figures 2 and 3, as well as from (11.13), the biasing of the proper time

distribution induces a narrowing of the peak relative to the unbiased case. In this latter

case, the width is determined essentially by the lifetime τ of the system. However, the same

effect which, in the t-biased case, is responsible for the undershooting, also induces the width

narrowing. This translates in turn into a narrowing of the likelihood profile for ∆m (which

corresponds to the logarithm of the likelihood ratio in (12.28)) and ultimately in a decrease

of the uncertainty in the ∆m determination. By preferentially selecting B events further

displaced from the production point, samples with larger proper decay times are formed,

which more precisely probe the frequency of the oscillations.

The oscillating undershooting pattern is visible near the Bs frequency peak in Figure 4(b)

for the combined scan of the first ∆ms measurement [100], and no less prominently in the

decay-mode specific scans of Figures 10.7 and 10.8 yielding the observation of Bs oscilla-

tions [101]. As demonstrated, these are as expected, from the characteristics of the proper

time distributions induced by the trigger and selection criteria employed to collect the data.
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Figure 2: Illustration of the amplitude scan shape for the case of unbiased proper decay

time (top) and in the presence of a direct cut (bottom); the graphs on the left indicate

the asymmetry distributions, while those on the right represent the corresponding Fourier

transforms.
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Figure 3: Illustration of t-biasing effects on the amplitude scan, using realistic toy simulation

for the ∆md case: (left) with biased t distribution, and (right) for the unbiased case where

the efficiency function was been disabled.
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(a) B0 oscillation scan.
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(b) Bs oscillation scan.

Figure 4: Amplitude scan performed on data, for the B0 (left) and Bs (right), displaying

expected undershooting in the vicinity of the peaks.


